Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Biol (Noisy-le-grand) ; 69(12): 19-25, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38063123

RESUMEN

Breast cancer is the most common type of cancer in women and the second  cause of cancer-related death after lung cancer. Although the common methods used in the treatment of breast cancer are chemotherapy, radiotherapy and surgery, the search for alternative treatments continues.  The leading  alternative treatments are medicinal plants which actually inspire the production of many cancer drugs. In this study, the proliferative and metastatic effects of Carthamus tinctorius L., known for its many therapeutic properties, on metastatic breast cancer were investigated. Here, intending to evaluate the the content and actions of different extracts of safflower leaves extracts were prepared by extracting in water, alcohol and oil and analysed by FTIR. Their antioxidant effect was tested and then the extracts were applied to metastatic breast cancer cells. FTIR spectrums of all three extracts have revealed the presence of organic compounds.  It is found that all extracts but mostly the oil extract has antioxidant property. MTT assay, wound healing assay and gene expression analysis were performed to assess the antiproliferative and anti metastatic effects of the extracts on breast cancer cells. It is found that, there is no significant antiproliferative effect of extracts on MDA-MB-231 cells except the alcohol extract. However, all safflower extracts, especially the oil extract, significantly reduced the metastatic potential of breast cancer cells. It is concluded that safflower contents are potent chemicals which inhibit the cellular mechanisms underlying the spreading of cancer cells and further analysis may lead to new initiatives in drug design research.


Asunto(s)
Neoplasias de la Mama , Carthamus tinctorius , Humanos , Femenino , Carthamus tinctorius/química , Carthamus tinctorius/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Células MDA-MB-231 , Antioxidantes/farmacología , Antioxidantes/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química
2.
Fitoterapia ; 171: 105605, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37437698

RESUMEN

Carthamus tinctorius L. leaves, a waste product after Carthami flos production, are rich in flavonoids. Total flavonoids from C. tinctorius L. leaves (TFCTLL) exhibited the protective effect on acute liver injury in mice in previous studies. The aim of the present study was to evaluate the hepatoprotective effect of TFCTLL on chronic liver injury (CLI) and investigate the underlying mechanism. The chemical components of TFCTLL were identified by UPLC-Q-TOF/MS, and their migration into blood was evaluated. The protective effect of TFCTLL on CLI was evaluated by antioxidative and anti-inflammatory experiments in vitro, network pharmacology and a carbon tetrachloride (CCl4)-induced CLI mouse model. We indentified 18 chemical components in the TFCTLL samples and 4 components in plasma. TFCTLL showed significant anti-inflammatory activity and antioxidant capacity in vitro and in vivo. TFCTLL administration prominently improved the liver function and structure, decreased the mRNA expression levels of TLR2, TLR3, TLR4, NF-κB p65, IRF3, AKT1, TRIF, PI3K, MyD88, IL-1ß and TNF-α and inhibited the protein expression and nuclear translocation of NF-κB p65 in mice with CLI. The molecular docking results showed that components in plasma had high binding affinity for the targets TLR4, PI3K and AKT1. Therefore, TFCTLL has a protective effect against CCl4-induced CLI, and the underlying mechanisms may be related to antioxidation, anti-inflammation and modulation of the TLRs/NF-κB and PI3K/AKT pathways.


Asunto(s)
Tetracloruro de Carbono , Carthamus tinctorius , Ratones , Animales , Tetracloruro de Carbono/metabolismo , Tetracloruro de Carbono/farmacología , Carthamus tinctorius/química , Carthamus tinctorius/metabolismo , Estrés Oxidativo , FN-kappa B/metabolismo , Flavonoides/farmacología , Flavonoides/metabolismo , Simulación del Acoplamiento Molecular , Receptor Toll-Like 4/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Estructura Molecular , Hígado , Antioxidantes/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo
3.
J Pharm Biomed Anal ; 227: 115277, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36736110

RESUMEN

The quality of traditional Chinese medicine (TCM) guarantees its clinical efficacy. Although advanced analytical techniques and methods can accurately determine the content of chemical components in TCM, it is difficult to accurately determine its clinical efficacy. In addition, the current analytical methods and technologies are complex and have difficulty meeting the requirements of a rapid, accurate and convenient determination of TCM quality. In this study, we first propose the concept of "indistinct" evaluation of the quality of TCM, that is, combining biological potency with character evaluation, quantifying the character evaluation, and preparing the safflower quality grade evaluation card based on the character analysis, which provides research ideas and methods for the rapid and accurate evaluation of the quality of TCM. We determined the biological potency of different batches of safflower based on the in vitro antiplatelet aggregation model and divided the safflower samples into two grades based on the biological potency. We further collected the color information of different grades of safflower samples, quantified the color information of different grades of safflower, drew a quality grade evaluation card for the rapid judgment of safflower quality grade and verified its accuracy by pharmacodynamic evaluation. To further analyze the differences in the material basis of different grades of safflower, the LC-MS method was used to simultaneously determine the contents of 19 chemical components, such as myricetin, in different grades of safflower samples to analyze the differences in the material basis of different grades of safflower. The result shows that the different grades of safflower exhibited significant differences in color. The pharmacodynamic results show that the quality evaluation card prepared based on color information can accurately evaluate quality, and the effect of first-class safflower is significantly better than that of second-class safflower. The chemical analysis results of different grades of safflower show that there are also significant differences between them, among which hypericin, 6-hydroxyapin-6-O-glucose-7-O-glucuronide, 6-hydroxykaempferol-3,6-O-diglucoside-7-O-glucuronic acid glycoside, 6-hydroxykaempferol-3,6,7-tri-O-glucoside and hydroxysafflower yellow A exhibit significant differences, which may be the main differentiating components of different grades of safflower. This study preliminarily confirmed that the "indistinct" evaluation of the quality of TCM based on character analysis is accurate and scientific, and the quality evaluation card prepared can accurately judge the quality of TCM, providing a reference for the rapid application of TCM character evaluation.


Asunto(s)
Carthamus tinctorius , Medicamentos Herbarios Chinos , Medicina Tradicional China , Carthamus tinctorius/química , Medicina de Precisión , Medicamentos Herbarios Chinos/química , Cromatografía Liquida
4.
Zhongguo Zhong Yao Za Zhi ; 48(24): 6624-6634, 2023 Dec.
Artículo en Chino | MEDLINE | ID: mdl-38212022

RESUMEN

Carthami Flos, as a traditional blood-activating and stasis-resolving drug, possesses anti-tumor, anti-inflammatory, and immunomodulatory pharmacological activities. Flavonoid glycosides are the main bioactive components in Carthamus tinctorius. Glycosyltransferase deserves to be studied in depth as a downstream modification enzyme in the biosynthesis of active glycoside compounds. This study reported a flavonoid glycosyltransferase CtUGT49 from C. tinctorius based on the transcriptome data, followed by bioinformatic analysis and the investigation of enzymatic properties. The open reading frame(ORF) of the gene was 1 416 bp, encoding 471 amino acid residues with the molecular weight of about 52 kDa. Phylogenetic analysis showed that CtUGT49 belonged to the UGT73 family. According to in vitro enzymatic results, CtUGT49 could catalyze naringenin chalcone to the prunin and choerospondin, and catalyze phloretin to phlorizin and trilobatin, exhibiting good substrate versatility. After the recombinant protein CtUGT49 was obtained by hetero-logous expression and purification, the enzymatic properties of CtUGT49 catalyzing the formation of prunin from naringenin chalcone were investigated. The results showed that the optimal pH value for CtUGT49 catalysis was 7.0, the optimal temperature was 37 ℃, and the highest substrate conversion rate was achieved after 8 h of reaction. The results of enzymatic kinetic parameters showed that the K_m value was 209.90 µmol·L~(-1) and k_(cat) was 48.36 s~(-1) calculated with the method of Michaelis-Menten plot. The discovery of the novel glycosyltransferase CtUGT49 is important for enriching the library of glycosylation tool enzymes and provides a basis for analyzing the glycosylation process of flavonoid glycosides in C. tinctorius.


Asunto(s)
Carthamus tinctorius , Chalconas , Carthamus tinctorius/genética , Carthamus tinctorius/química , Filogenia , Flavonoides/análisis , Glicósidos/análisis , Glicosiltransferasas/genética , Antiinflamatorios
5.
Zhongguo Zhong Yao Za Zhi ; 47(20): 5530-5536, 2022 Oct.
Artículo en Chino | MEDLINE | ID: mdl-36471969

RESUMEN

This study investigated the chemical components from the florets of Carthamus tinctorius. Five compounds were isolated from C. tinctorius by column chromatography with silica gel and toyopearl HW-40 F, preparative thin-layer chromatography(TLC), and semi-preparative reverse phased high performance liquid chromatography(RP-HPLC). Their structures were identified by mass spectrometry(MS), one-dimension nuclear magnetic resonance(1 D-NMR), two-dimension nuclear magnetic resonance(2 D-NMR), and single-crystal X-ray diffraction as(-)-(2S,3S,5S,7S,10R)-eudesma-4(15)-en-2,3,11-triol(1 a),(+)-(2R,3R,5R,7R,10S)-eudesma-4(15)-en-2,3,11-triol(1 b), rosin(2),(+)-syringaresinol(3), and(E)-1-(4'-hydroxyphenyl)-but-1-en-3-one(4). Compounds 1 a and 1 b are a pair of enantiomeric sesquiterpenoids. Compound 1 a is a new eudesmene and is named(-)-plucheol A. Compound 1 a at 100 µmol·L~(-1) showed significant antioxidant activity against ABTS~(+·) and DPPH·, with the scavenging rates of 30.98%±4.17% and 27.52%±1.24%, respectively, while compound 1 b was inactive. In addition, compounds 1 a and 1 b showed no obvious anti-inflammatory activity.


Asunto(s)
Carthamus tinctorius , Sesquiterpenos , Carthamus tinctorius/química , Cromatografía Líquida de Alta Presión/métodos , Sesquiterpenos/química , Estereoisomerismo , Espectrometría de Masas , Estructura Molecular
6.
Zhongguo Zhong Yao Za Zhi ; 47(17): 4574-4582, 2022 Sep.
Artículo en Chino | MEDLINE | ID: mdl-36164862

RESUMEN

Carthamus tinctorius is proved potent in treating ischemic stroke. Flavonoids, such as safflower yellow, hydroxysafflor yellow A(HSYA), nicotiflorin, safflower yellow B, and kaempferol-3-O-rutinoside, are the main substance basis of C. tinctorius in the treatment of ischemic stroke, and HSYA is the research hotspot. Current studies have shown that C. tinctorius can prevent and treat ischemic stroke by reducing inflammation, oxidative stress, and endoplasmic reticulum stress, inhibiting neuronal apoptosis and platelet aggregation, as well as increasing blood flow. C. tinctorius can regulate the pathways including nuclear factor(NF)-κB, mitogen-activated protein kinase(MAPK), signal transducer and activator of transcription protein 3(STAT3), and NF-κB/NLR family pyrin domain containing 3(NLRP3), and inhibit the activation of cyclooxygenase-2(COX-2)/prostaglandin D2/D prostanoid receptor pathway to alleviate the inflammatory development during ischemic stroke. Additionally, C. tinctorius can relieve oxidative stress injury by inhibiting oxidation and nitrification, regulating free radicals, and mediating nitric oxide(NO)/inducible nitric oxide synthase(iNOS) signals. Furthermore, mediating the activation of Janus kinase 2(JAK2)/STAT3/suppressor of cytokine signaling 3(SOCS3) signaling pathway and phosphoinositide 3-kinase(PI3 K)/protein kinase B(Akt)/glycogen synthase kinase-3ß(GSK3ß) signaling pathway and regulating the release of matrix metalloproteinase(MMP) inhibitor/MMP are main ways that C. tinctorius inhibits neuronal apoptosis. In addition, C. tinctorius exerts the therapeutic effect on ischemic stroke by regulating autophagy and endoplasmic reticulum stress. The present study reviewed the molecular mechanisms of C. tinctorius in the treatment of ischemic stroke to provide references for the clinical application of C. tinctorius.


Asunto(s)
Carthamus tinctorius , Chalcona , Flavonoides , Accidente Cerebrovascular Isquémico , Carthamus tinctorius/química , Chalcona/análogos & derivados , Chalcona/farmacología , Chalcona/uso terapéutico , Ciclooxigenasa 2/metabolismo , Citocinas/metabolismo , Flavonoides/farmacología , Flavonoides/uso terapéutico , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Janus Quinasa 2/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Prostaglandina D2 , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinonas/farmacología
7.
J Ethnopharmacol ; 298: 115656, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36041691

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Alzheimer's disease (AD) is a multicausal neurodegenerative disease clinically characterized by generalized dementia. The pathogenic process of AD not only is progressive and complex but also involves multiple factors and mechanisms, including ß-amyloid (Aß) aggregation, tau protein hyperphosphorylation, oxidative stress, and neuroinflammation. As the first-line treatment for AD, cholinesterase inhibitors can, to a certain extent, relieve AD symptoms and delay AD progression. Nonetheless, the current treatment strategies for AD are far from meeting clinical expectations, and more options for AD treatment should be applied in clinical practice. AIM OF THE REVIEW: The aim of this review was to investigate published reports of C. tinctorius L. and its active constituents in AD treatment through a literature review. MATERIALS AND METHODS: Information was retrieved from scientific databases including Web of Science, ScienceDirect, Scopus, Google Scholar, Chemical Abstracts Services and books, PubMed, dissertations and technical reports. Keywords used for the search engines were "Honghua" or "Carthamus tinctorius L." or "safflower" in conjunction with "(native weeds OR alien invasive)"AND "Chinese herbal medicine". RESULTS: A total of 47 literatures about C. tinctorius L. and its active constituents in AD treatment through signaling pathways, immune cells, and disease-related mediators and systematically elucidates potential mechanisms from the point of anti-Aß aggregation, suppressing tau protein hyperphosphorylation, increasing cholinergic neurotransmitters levels, inhibiting oxidative stress, anti-neuroinflammation, ameliorating synaptic plasticity, and anti-apoptosis. CONCLUSIONS: Chinese herbal medicine (CHM) is a treasure endowed by nature to mankind. Emerging studies have confirmed that CHM and its active constituents play a positive role in AD treatment. Carthamus tinctorius L., the most commonly used CHM, can be used with medicine and food, with the effect of activating blood circulation and eliminating blood stasis. In the paper, we have concluded that the existing therapeutic mechanisms of C. tinctorius L. and summarized the potential mechanisms of C. tinctorius L. and its active constituents in AD treatment through a literature review.


Asunto(s)
Enfermedad de Alzheimer , Carthamus tinctorius , Enfermedades Neurodegenerativas , Enfermedad de Alzheimer/tratamiento farmacológico , Carthamus tinctorius/química , Inhibidores de la Colinesterasa/uso terapéutico , Humanos , Proteínas tau
8.
Molecules ; 27(11)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35684510

RESUMEN

A new flavonoid, saffloflavanside (1), a new sesquiterpene, safflomegastigside (2), and a new amide, saffloamide (3), together with twenty-two known compounds (4-25), were isolated from the flowers of Carthamus tinctorius L. Their structures were determined based on interpretation of their spectroscopic data and comparison with those reported in the literature. The protective effects against lipopolysaccharide (LPS)-stimulated damage on human normal lung epithelial (BEAS-2B) cells of the compounds were evaluated using MTT assay and cellular immunofluorescence assay. The results showed that compounds 2-3, 8-11, and 15-19 exhibited protective effects against LPS-induced damage to BEAS-2B cells. Moreover, compounds 2-3, 8-11, and 15-19 can significantly downregulate the level of nuclear translocation of NF-κB p-p65. In summary, this study revealed chemical constituents with lung protective activity from C. tinctorius, which may be developed as a drug for the treatment of lung injury.


Asunto(s)
Carthamus tinctorius , Carthamus tinctorius/química , Flavonoides/química , Flores/química , Humanos , Lipopolisacáridos , Pulmón
9.
Molecules ; 27(7)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35408704

RESUMEN

Safflower seed oil (SSO) is considered to be an excellent edible oil since it contains abundant essential unsaturated fatty acids and lipid concomitants. However, the traditional alkali-refined deacidification process of SSO results in a serious loss of bioactive components of the oil and also yields massive amounts of wastewater. In this study, SSO was first extracted by ultrasonic-assisted ethanol extraction (UAEE), and the extraction process was optimized using random centroid optimization. By exploring the effects of ethanol concentration, solid−liquid ratio, ultrasonic time, and the number of deacidification times, the optimum conditions for the deacidification of safflower seed oil were obtained as follows: ethanol concentration 100%, solid−liquid ratio 1:4, ultrasonic time 29 min, and number of deacidification cycles (×2). The deacidification rate was 97.13% ± 0.70%, better than alkali-refining (72.16% ± 0.13%). The values of acid, peroxide, anisidine and total oxidation of UAEE-deacidified SSO were significantly lower than those of alkali-deacidified SSO (p < 0.05). The contents of the main lipid concomitants such as tocopherols, polyphenols, and phytosterols in UAEE-decidified SSO were significantly higher than those of the latter (p < 0.05). For instance, the DPPH radical scavenging capacity of UAEE-processed SSO was significantly higher than that of alkali refining (p < 0.05). The Pearson bivariate correlation analysis before and after the deacidification process demonstrated that the three main lipid concomitants in SSO were negatively correlated with the index of peroxide, anisidine, and total oxidation values. The purpose of this study was to provide an alternative method for the deacidification of SSO that can effectively remove free fatty acids while maintaining the nutritional characteristics, physicochemical properties, and antioxidant capacity of SSO.


Asunto(s)
Carthamus tinctorius , Álcalis , Carthamus tinctorius/química , Etanol/química , Peróxidos , Aceites de Plantas/química , Aceite de Cártamo , Tecnología , Ultrasonido
10.
Open Vet J ; 12(1): 80-90, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35342738

RESUMEN

Background: Ticks and tick-borne diseases are a severe economic and public-health problem for cattle producers. The emergence of acaricide resistance to synthetic chemical treatments has prompted interest in developing alternative tick control methods. Aim: The main objective of the current research was to identify the chemical structure of Carthamus tinctorius and Nasturtium officinale seed oils and to assess their anti-tick properties against Hyalomma scupense ticks both alone and in combination (1:1). Methods: Analytical methods were used to analyze the chemical components. For in vitro assays, adults of H. scupense were immersed in C. tinctorius and N. officinale seed oils at 100, 125, 200, and 300 mg/ml concentrations; for 5 minutes. Larvae of H. scupense were dipped in 25, 50, 100, 125, 200, and 300 mg/ml doses of seed oils; the mortality percentage was determined after 24 hours. Results: The seed oil safflower was mainly composed of linoleic acid (84.48%), followed by palmitic acid (6.54%) and stearic acid (3.77%). Meanwhile, watercress seed oil was mainly composed of linolenic acid (50.78%), gondoic acid (13.57%), linoleic acid (10.58%), palmitic acid (8.02%), and erucidic acid (6.62%). The Adults Immersion Test showed the sensitivity of ticks to C. tinctorius and N. officinale seed oil: C. tinctorius seed oil caused (95%) mortality of H. scupense at 300 mg/ml, while N. officinale seed oil induced (88.68%) mortality at the same concentration. At a 200 mg/ml concentration, C. tinctorius and N. officinale oil combined caused 100% mortality. Tested oils showed larvicidal efficacy. LC50 values for C. tinctorius and N. officinale seed oils were 84.16 and 61.78 mg/ml, respectively, in 24 hours. LC50 value of oils association (50% C. tinctorius: 50% N. officinale) was 47.96 mg/ml.The mixture of seed oils from two plants tested against H. scupense larvae and adult females at a 1:1 ratio showed synergistic interaction. Conclusion: Seed oils tested alone, and the mixture could be used as an alternative solution in the fight against ticks.


Asunto(s)
Carthamus tinctorius , Ixodidae , Nasturtium , Rhipicephalus , Animales , Carthamus tinctorius/química , Femenino , Ácido Linoleico , Ácido Palmítico , Aceites de Plantas/química , Aceites de Plantas/farmacología
11.
Molecules ; 27(4)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35209083

RESUMEN

In this study, ultrasound-assisted extraction (UAE) was applied to extract bioactive substances with skin-whitening, anti-wrinkle, and antioxidant effects from safflower seeds, and the extraction conditions were optimized by a central composite design. The independent variables, including extraction time (5.0~55.0 min), extraction temperature (26.0~94.0 °C), and ethanol concentration (0.0~100%), were optimized to increase tyrosinase activity inhibitory (TAI), collagenase activity inhibitory (CAI), and radical scavenging activity (RSA), which are indicators of skin-whitening, anti-wrinkle, and antioxidant effects. An extraction time of 26.4 min, extraction temperature of 52.1 °C, and ethanol concentration of 50.7% were found to be optimum conditions of UAE, under which TAI, CAI, and RSA were 53.3%, 91.5%, and 27.7%, respectively. The extract produced by UAE was analyzed by LC-MS/MS, and maleic acid and levulinic acid were identified as the main substances. Therefore, UAE is evaluated as an effective process to extract skin-whitening, anti-wrinkle, and antioxidant substances from safflower seeds at lower temperatures and shorter extraction times compared to the conventional extraction methods. Overall, safflower seeds extract can be used as a material for value-added cosmetics, including maleic acid and levulinic acid, which have bioactive functions.


Asunto(s)
Carthamus tinctorius/química , Fraccionamiento Químico/métodos , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Semillas/química , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Cromatografía Liquida , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Inhibidores Enzimáticos/farmacología , Estructura Molecular , Extractos Vegetales/química , Piel/efectos de los fármacos , Solventes , Espectrometría de Masas en Tándem , Temperatura , Ondas Ultrasónicas
12.
Int J Pharm ; 616: 121537, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35150848

RESUMEN

Androgenetic alopecia (AGA) affects physical and mental health with limited therapeutic options. Novel materials and delivery methods have considerable potential to improve the current paradigm of treatment. In this study, we used a novel plant nanoparticle of safflower oil body (SOB) loaded with human fibroblast growth factor 10 (hFGF10) to target hair follicles and accelerate hair regeneration in AGA mice with few adverse effects. Our data revealed that the average particle size of SOB-hFGF10 was 226.73 ± 9.98 nm, with a spherical and uniform structure, and that SOB-hFGF10 was quicker to preferentially penetrate into hair follicles than hFGF2 alone. Using a mouse model of AGA, SOB-hFGF10 was found to significantly improve hair regeneration without any significant toxicity. Furthermore, SOB-hFGF10 inhibited dihydrotestosterone (DHT)-induced TNF-α, IL-1ß, and IL-6 overproduction in macrophages in relation to hair follicle microinflammation, thereby enhancing the proliferation of dermal papilla cells. Overall, this study provides an applicable therapeutic method through targeting hair follicles and reducing microinflammation to accelerate hair regeneration in AGA.


Asunto(s)
Alopecia/tratamiento farmacológico , Factor 10 de Crecimiento de Fibroblastos , Nanopartículas , Aceite de Cártamo , Carthamus tinctorius/química , Sistemas de Liberación de Medicamentos , Factor 10 de Crecimiento de Fibroblastos/administración & dosificación , Factor 10 de Crecimiento de Fibroblastos/uso terapéutico , Cabello/crecimiento & desarrollo , Folículo Piloso/efectos de los fármacos , Humanos , Regeneración , Aceite de Cártamo/química
13.
Food Funct ; 12(22): 11704-11716, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34730571

RESUMEN

In addition to beta-amyloid (Aß) plaques and neurofibrillary tangles, Alzheimer's disease (AD) is typically triggered or accompanied by abnormal inflammation, oxidative stress and astrocyte activation. Safflower (Carthamus tinctorius L.) leaf, featuring functional ingredients, is a commonly consumed leafy vegetable. Whether and how dietary safflower leaf powder (SLP) ameliorates cognitive function in an AD mouse model has remained minimally explored. Therefore, we orally administered SLP to APP/PS1 transgenic mice to explore the neuroprotective effects of SLP in preventing AD progression. We found that SLP markedly improved cognitive impairment in APP/PS1 mice, as indicated by the water maze test. We further demonstrated that SLP treatment ameliorated inflammation, oxidative stress and excessive astrocyte activation. Further investigation indicated that SLP decreased the Aß burden in APP/PS1 mice by mediating excessive astrocyte activation. Our study suggests that safflower leaf is possibly a promising, cognitively beneficial food for preventing and alleviating AD-related dementia.


Asunto(s)
Astrocitos/efectos de los fármacos , Carthamus tinctorius/química , Cognición/efectos de los fármacos , Extractos Vegetales/farmacología , Enfermedad de Alzheimer/metabolismo , Animales , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Transgénicos , Prueba del Laberinto Acuático de Morris/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Hojas de la Planta/química
14.
Food Funct ; 12(19): 9360-9371, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34606545

RESUMEN

Anhydrosafflor yellow B (AHSYB) is a major active water-soluble pigment in Safflower, but it has not received enough attention yet. In this study, high-speed counter-current chromatography (HSCCC) was used to prepare AHSYB from safflower. The parameters of the separation process were optimized by response surface methodology for the first time. The entropy weight method (EWM) was applied to calculate the information entropy and the weight of five indexes, and then figure out a comprehensive index of the HSCCC separation effect. Under the optimized separation conditions, a HSCCC apparatus speed of 850 rpm, a flow rate of 2 mL min-1 for the mobile phase and a separation temperature of 40 °C for AHSYB were achieved with a purity of 98%. Furthermore, AHSYB was found to have cardio-protective effects by inhibiting apoptosis via the mitochondrial-mediated pathway in oxygen-glucose deprivation/reoxygenation-induced H9c2 cells. This research provides good method guides for the rapid and efficient separation of active compounds from food-grade Chinese herb medicines.


Asunto(s)
Apoptosis/efectos de los fármacos , Cardiotónicos/aislamiento & purificación , Cardiotónicos/farmacología , Carthamus tinctorius/química , Miocitos Cardíacos/efectos de los fármacos , Pigmentos Biológicos/aislamiento & purificación , Pigmentos Biológicos/farmacología , Adenosina Trifosfato/metabolismo , Animales , Cardiotónicos/química , Caspasa 3/genética , Caspasa 3/metabolismo , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Distribución en Contracorriente , Citocromos c/genética , Citocromos c/metabolismo , Regulación hacia Abajo , L-Lactato Deshidrogenasa/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Pigmentos Biológicos/química , Extractos Vegetales/química , Ratas , Especies Reactivas de Oxígeno
15.
Phytomedicine ; 91: 153694, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34403879

RESUMEN

BACKGROUND: Atherosclerosis is a chronic vascular inflammatory disease with complex pathogenesis. Its serious consequence is insufficient blood supply to heart and brain, which eventually leads to myocardial ischemia, infarction and stroke. Hydroxysafflor yellow A (HSYA), a single chalcone glycoside compound with a variety of pharmacological effects, which has shown a potential biological activity for prevention and treatment of atherosclerosis. PURPOSE: The main purpose of this review is to comprehensively elucidate the mechanism of HSYA on atherosclerosis and its risk factors (hyperlipidemia, hypertension and diabetes mellitus). METHOD: The literatures on HSYA in the treatment of atherosclerosis and its risk factors were searched in PubMed, Google Scholar, China National Knowledge Infrastructure, including in vitro (cell), in vivo (animal) and clinical (human) studies, and summarized reasonably. RESULTS: HSYA is a promising natural product for treating atherosclerosis. It can suppress foam cell formation, vascular endothelial cell dysfunction, vascular smooth muscle cell proliferation and migration, and platelet activation. The mechanisms are achieved by regulating the reverse cholesterol transport process, fatty acid synthesis, oxidative stress, PI3K/Akt/mTOR, NLRP3 inflammasome, TNFR1/NF-κB, NO-cGMP, Bax/Bcl-2, MAPKs, CDK/CyclinD and TLR4/Rac1/Akt signaling pathways. Besides, HSYA is devoted to lowering blood lipids, regulating ion channels, reducing vascular inflammation, and protecting pancreatic beta cells, which is conducive to reducing the harm of independent risk factors of atherosclerosis. CONCLUSIONS: HSYA exhibits the preventive and therapeutic effects on atherosclerosis and its risk factors in vivo and in vitro, which is relevant to multiple mechanisms. The clinical trials of HSYA need to be further investigated to provide a solid foundation for its clinical application.


Asunto(s)
Aterosclerosis , Carthamus tinctorius , Chalcona , Quinonas , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control , Carthamus tinctorius/química , Chalcona/análogos & derivados , Chalcona/farmacología , Humanos , Fitoquímicos/farmacología , Quinonas/farmacología
16.
Food Funct ; 12(17): 8037-8043, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34279018

RESUMEN

This study covers aspects of stability and colouration of Carthamin- a unique red chalcone extracted from Carthamus tinctorius L. Due to its fast degradation in aqueous solutions even at room temperature, Carthamin has no significant use in the food industry. Therefore, obtaining Carthamin in a stable form is of high interest. Comparing UV-Vis spectra of Carthamin solutions and RGB-data of Carthamin-cellulose complex in the wet state showed a predominant formation of stable Carthamin conformation on the cellulose phase. It was determined that the wet Carthamin-cellulose complex acquires a stable and rich magenta colour in the pH range of 1-5. In aqueous suspensions with pH >6, the Carthamin-cellulose complex gets a purple colour, which is absolutely uncharacteristic for pure Carthamin in an aqueous solution. IR spectra indicate the fixation of Carthamin molecules on the cellulose, which presumably causes hindrance of free internal rotation of Carthamin molecules in the cellulose phase. The reduction of water activity in the cellulosic phase represents an additional stabilizing factor. As a result, the Carthamin-cellulose complex withstands heating up to 70 °C for 15 min in the pH range of 2-5, showing up to 90% of stability. These conditions are typical for the preparation of a wide range of food products. High stability in a food-like environment and magenta colour make the Carthamin-cellulose complex a prospective natural food dye.


Asunto(s)
Celulosa/química , Chalcona/análogos & derivados , Colorantes de Alimentos/química , Glucósidos/química , Extractos Vegetales/química , Carthamus tinctorius/química , Chalcona/química , Conformación Molecular , Espectrofotometría Infrarroja
17.
J Ethnopharmacol ; 278: 114279, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34087402

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Nicotiflorin is a flavonoid glycoside derived from the traditional Chinese medicine FlosCarthami, dried petals of Carthamus tinctorius L., and has been confirmed to be a promising novel drug candidate for ischemic stroke. Yet, the exact role of nicotiflorin in cerebral I/R injury is uncharacterized and the possible mechanisms have not been clearly expounded. AIM OF THE STUDY: The present study was designed to determine the effect of nicotiflorin on cerebral ischemia/reperfusion (I/R) injury and its relationship with autophagy. MATERIALS AND METHODS: Middle cerebral artery occlusion (MCAO) in rats and oxygen-glucose deprivation and reintroduction (OGD/R) in SH-SY5Y cells were established in in vivo and in vitro models, respectively. The severity of MCAO was assessed by brain infarct size, neurological scores and survival rate. The severity of OGD/R was evaluated by cell viability, lactate dehydrogenase (LDH) release and cell apoptosis. The level of autophagy was evaluated both in vivo and in vitro. Autophagosomes were observed using transmission electron microscopy and autophagic flux was measured using mRFP-GFP-tandem fluorescent LC3 adenovirus. Autophagy-related proteins (LC3-II/I, SQSTM1, beclin-1, Phospho-mTOR/mTOR) were measured by immunoblot. Autophagy-related mRNA levels (Becn1, Atg7) were detected by Real-Time PCR. Inhibition of autophagy was implemented by 3-Methyladenine (3-MA) or chloroquine in vitro. RESULTS: In vivo, nicotiflorin treatment alleviated brain damage and neurological deficit while it dramatically increased 72 h survival rate in rats. In vitro, nicotiflorin treatment also ameliorated the severity of OGD/R. Moreover, nicotiflorin treatment increased ischemic penumbra autophagy (autophagosomes, BECN1, LC3-II/I ratio, SQSTM1, Phospho-mTOR/mTOR, Atg7). In vitro, nicotiflorin likewise enhanced autophagy and promoted autophagy flux. Furthermore, the blockade of autophagy by 3-MA or chloroquine disabled the efficacic of nicotiflorin in preventing cell damage upon OGD/R insult. CONCLUSION: These findings suggest that autophagy plays a significant role in the protective effect of nicotiflorin against ischemic stroke.


Asunto(s)
Autofagia/efectos de los fármacos , Carthamus tinctorius/química , Flavonoides/farmacología , Fármacos Neuroprotectores/farmacología , Fenoles/farmacología , Animales , Apoptosis/efectos de los fármacos , Flavonoides/aislamiento & purificación , Glucosa/metabolismo , Infarto de la Arteria Cerebral Media , Accidente Cerebrovascular Isquémico/prevención & control , Fármacos Neuroprotectores/aislamiento & purificación , Oxígeno/metabolismo , Fenoles/aislamiento & purificación , Ratas , Ratas Wistar , Daño por Reperfusión/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos
18.
Phytomedicine ; 87: 153579, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33991865

RESUMEN

BACKGROUND: Hydroxysafflor yellow A (HSYA) from the flower of Carthamus tinctorius (Safflower) has been reported to have various pharmacological effects. However, little is known about the bioactivities of other chemical constituents in Safflower and the relationship between enhancement of blood circulation and hepatoprotection by HSYA. PURPOSE: The present research was to evaluate the antithrombotic and hepatoprotective activities of HSYA and C, examine their mechanisms of actions, including influence on the excretion velocity of acetaminophen, and the relationship between the antithrombotic, hepatoprotective, and other bioactivities. METHODS: The hepatoprotective activities were examined by acetaminophen (APAP)-induced zebrafish toxicity and carbon tetrachloride (CCl4)-induced mouse liver injury. The concentrations of APAP in zebrafish and APAP that was excreted to the culture media were quantified by UHPLC-MS. The anti-thrombosis effect of HSYA and C were examined by the phenylhydrazine (PHZ)-induced zebrafish thrombosis. RESULTS: HSYA and HSYC showed robust protection on APAP-induced toxicity and PHZ-induced thrombosis. The hepatoprotective effects of HSYA and C were more potent than that of the positive control, acetylcysteine (61.7% and 58.0%, respectively, vs. 56.9% at 100 µM) and their antithrombosis effects were more robust than aspirin (95.1% and 86.2% vs. 52.7% at 100 µM). HSYA and C enhanced blood circulation, rescued APAP-treated zebrafish from morphological abnormalities, and mitigated APAP-induced toxicity in liver development in liver-specific RFP-expressing transgenic zebrafish. HSYC attenuated CCl4-induced mouse liver injury and regulated the levels of HIF-1α, iNOS, TNF-α, α-SMA, and NFκB in liver tissues. HSYA was also protective in a dual thrombotic and liver toxicity zebrafish model. By UHPLC-MS, HSYA accelerated the excretion of APAP. CONCLUSION: HSYA and C are the bioactive constituents of Safflower that are responsible for the herbal drug's traditional use in promoting blood circulation to remove blood stasis. Safflower and its chalcone constituents may protect from damage due to exogenous or disease-induced endogenous toxins by enhancing the excretion velocity of toxins.


Asunto(s)
Acetaminofén/toxicidad , Chalcona/análogos & derivados , Fibrinolíticos/farmacología , Sustancias Protectoras/farmacología , Quinonas/farmacología , Acetaminofén/farmacocinética , Animales , Animales Modificados Genéticamente , Circulación Sanguínea/efectos de los fármacos , Tetracloruro de Carbono/toxicidad , Carthamus tinctorius/química , Chalcona/aislamiento & purificación , Chalcona/farmacología , Chalconas/aislamiento & purificación , Chalconas/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Glicósidos/aislamiento & purificación , Glicósidos/farmacología , Hepatocitos/efectos de los fármacos , Humanos , Masculino , Ratones Endogámicos ICR , Fenilhidrazinas/toxicidad , Sustancias Protectoras/química , Sustancias Protectoras/aislamiento & purificación , Quinonas/aislamiento & purificación , Trombosis/inducido químicamente , Trombosis/tratamiento farmacológico , Pez Cebra/genética
19.
Biomed Chromatogr ; 35(10): e5171, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34010455

RESUMEN

Notoginseng total saponins (NS), safflower total flavonoids (SF), and the combination of NS and SF, namely CNS, are used for the treatment of cardiovascular diseases in clinic. This study developed a cocktail assay involving seven cytochrome P450 (CYP) enzymes to elucidate the effect of NS, SF, and CNS on CYP enzymes and to explore the synergistic effect of CNS in terms of CYP enzymes. Ultra-performance liquid chromatography-MS and reverse-transcription polymerase chain reaction were applied to detect the activities and mRNA expression levels of CYP enzymes. SF exhibited inhibitory effects on CYP1A2, 2B1, 2E1, and 2C11 and induction effects on CYP2C19 and 2D4. NS exhibited induction effects on CYP1A2, 2B1, 2E1, 2C11, 2C19, and 2D4. CNS exhibited induction effects on CYP1A2, 2B1, 2E1, 2C19, and 2D4 and inhibitory effects on CYP3A1 in vivo. Moreover, mRNA expression results were consistent with pharmacokinetic results. Potential herb-drug interactions should be studied closely when SF, NS, or CNS with clinical drugs are metabolized by CYP1A2, 2B1, 2E1, 2C11, 2C19, 2D4, and 3A1. CNS could change the inhibition or induction effects of CYP compared to the NS group, which might be one of the causes for the synergistic effects of the combination of NS and SF.


Asunto(s)
Carthamus tinctorius/química , Sistema Enzimático del Citocromo P-450 , Flavonoides/farmacología , Panax notoginseng/química , Saponinas/farmacología , Animales , Cromatografía Líquida de Alta Presión , Sistema Enzimático del Citocromo P-450/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/metabolismo , Flavonoides/análisis , Interacciones de Hierba-Droga , Masculino , Ratas , Ratas Sprague-Dawley , Saponinas/análisis
20.
Z Naturforsch C J Biosci ; 76(1-2): 27-34, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33725750

RESUMEN

Pulmonary arterial hypertension (PAH) is a group of diseases with an increase of pulmonary artery pressure (PAP) and pulmonary vascular resistance. Here, the effects of safflower injection, a preparation of Chinese herbs, was investigated in a monocrotaline (MCT)-induced PAH rat model. PAP, carotid artery pressure (CAP), and the right ventricular hypertrophy index (RVHI) increased in the PAH group, while safflower injection was able to inhibit this increase to similar levels as observed in the normal group. The arteriole wall of the lungs and cardiac muscle were thickened and edema was observed in the PAH group, while these pathologies were improved in the herb-treated group in a dose-dependent manner. MCT treatment induced proliferation of pulmonary artery smooth muscle cells (PASMCs), which was inhibited by safflower injection in a dose-dependent manner. Our experimental results demonstrated that safflower injection can regulate pulmonary arterial remodeling through affecting the expression of connective tissue growth factor, transforming growth factor-ß, integrin, collagen or fibronectin, which subsequently affected the thicknesses of the arteriole walls of the lungs and cardiac muscle, and thereby benefits the control of PAH. This means safflower injection improved the abnormalities in PAP, CAP and RVHI, and pulmonary arterial remodeling through regulation of remodeling factors.


Asunto(s)
Carthamus tinctorius/química , Medicamentos Herbarios Chinos/uso terapéutico , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Animales , Presión Sanguínea , Proliferación Celular , Células Cultivadas , Colágeno/metabolismo , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología , Fibronectinas/metabolismo , Inyecciones , Integrinas/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Monocrotalina/toxicidad , Miocardio/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/fisiología , Hipertensión Arterial Pulmonar/etiología , Ratas , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta/metabolismo , Remodelación Ventricular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA